Spindle Assembly Checkpoint Acquisition at the Mid-Blastula Transition

نویسندگان

  • Maomao Zhang
  • Priyanka Kothari
  • Michael A. Lampson
چکیده

The spindle assembly checkpoint (SAC) maintains the fidelity of chromosome segregation during mitosis. Nonpathogenic cells lacking the SAC are typically only found in cleavage stage metazoan embryos, which do not acquire functional checkpoints until the mid-blastula transition (MBT). It is unclear how proper SAC function is acquired at the MBT, though several models exist. First, SAC acquisition could rely on transcriptional activity, which increases dramatically at the MBT. Embryogenesis prior to the MBT relies primarily on maternally loaded transcripts, and if SAC signaling components are not maternally supplied, the SAC would depend on zygotic transcription at the MBT. Second, checkpoint acquisition could depend on the Chk1 kinase, which is activated at the MBT to elongate cell cycles and is required for the SAC in somatic cells. Third, SAC function could depend on a threshold nuclear to cytoplasmic (N:C) ratio, which increases during pre-MBT cleavage cycles and dictates several MBT events like zygotic transcription and cell cycle remodeling. Finally, the SAC could by regulated by a timer mechanism that coincides with other MBT events but is independent of them. Using zebrafish embryos we show that SAC acquisition at the MBT is independent of zygotic transcription, indicating that the checkpoint program is maternally supplied. Additionally, by precociously lengthening cleavage cycles with exogenous Chk1 activity, we show that cell cycle lengthening and Chk1 activity are not sufficient for SAC acquisition. Furthermore, we find that SAC acquisition can be uncoupled from the N:C ratio. Together, our findings indicate that SAC acquisition is regulated by a maternally programmed developmental timer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition.

Following fertilization, oviparous embryos undergo rapid, mostly transcriptionally silent cleavage divisions until the mid-blastula transition (MBT), when large-scale developmental changes occur, including zygotic genome activation (ZGA) and cell cycle remodeling, via lengthening and checkpoint acquisition. Despite their concomitant appearance, whether these changes are co-regulated is unclear....

متن کامل

Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae.

The spindle assembly checkpoint regulates the metaphase-to-anaphase transition from yeast to humans. We examined the genetic interactions with four spindle assembly checkpoint genes to identify nonessential genes involved in chromosome segregation, to identify the individual roles of the spindle assembly checkpoint genes within the checkpoint, and to reveal potential complexity that may exist. ...

متن کامل

Anaphase-Promoting Complex/Cyclosome–Dependent Proteolysis of Human Cyclin a Starts at the Beginning of Mitosis and Is Not Subject to the Spindle Assembly Checkpoint

Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently poly...

متن کامل

Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast

The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when...

متن کامل

Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition

The early cell divisions of many metazoan embryos are rapid and occur in the near absence of transcription. At the mid-blastula transition (MBT), the cell cycle elongates and several processes become established including the onset of bulk transcription and cell-cycle checkpoints. How these events are timed and coordinated is poorly understood. Here we show in Xenopus laevis that developmental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015